
714

2023 26th Euromicro Conference on Digital System Design (DSD)

2771-2508/23/$31.00 ©2023 IEEE
DOI 10.1109/DSD60849.2023.00102

20
23

 2
6t

h
Eu

ro
m

ic
ro

 C
on

fe
re

nc
e

on
 D

ig
ita

l S
ys

te
m

 D
es

ig
n

(D
SD

) |
 9

79
-8

-3
50

3-
44

19
-6

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

DS
D6

08
49

.2
02

3.
00

10
2

2023 26th Euromicro Conference on Digital System Design (DSD)

FPGA-based Encryption System for Cloud Security
Marios Papadopoulos, Paris Kitsos

ECSA Lab., Electrical and Computer Engineering Department
University of the Peloponnese, Greece

m. papadopoulos@go.uop.gr, kitsos@uop.gr

Abstract-The primary goal of this work is to introduce
possible hardware solutions that can increase trust in cloud
computing while maintaining data control in the hands of the data
holder, in the framework of the collaborative environment
provided by cloud computing. A software-based solution leads to
possible anonymity or impersonation.

Keywords- FPGA, Cloud Encryption, RSA and KAC
techniques

I. INTRODUCTION

Cloud Computing is an emerging technology in industry that
enables access to a shared pool of computing resources for cloud
users. Despite Cloud computing offers many benefits to users,
there are some drawbacks that place restrictions on the usage of
cloud computing. One of the most important is security. Data
sharing is an important functionality in cloud storage [l]. One of
the major problems is how the user can share encrypted data
efficiently. In an inefficient way, a user can download the
encrypted data from the storage, decrypt them and then send
them to others users. But, by this way the user loses the value of
cloud storage. Although, the users should be able to share partial
data in cloud storage, this task is not easy in a security point of
view. In cloud computing, this property is called, multitenancy
which means that many customers of a cloud vendor use the
same computer resources [2]. Although they share resources,
cloud clients do not know each other and their data is kept
completely separate.

In addition, FPGAs (Field Programmable Gate Arrays) is an
excellent piece of the Cloud Computing toolbox. Since FPGAs
that can offers many advantages such as reconfigurability, high
throughput, predictable latency and low power consumption can
be utilized as a general purpose computing resources on the
cloud. They also can change on-the-fly their circuits offering
functionality enhancement using Dynamic Partial
Reconfiguration (DPR) capabilities [l]. This property is very
usefull when a given FPGA is shared simultaneously by multiple
tenants. It is obvious that any security approach proposed should
take into account and support multifunctionality. So, an
adoption of existing techniques, e.g. IP protection for a single
tenancy do not address the issues' arises in cloud for practical
deployment.

In this paper we investigate the efficiency in the hardware
implementation point of view of a Key-Aggregation­
Cryptosystem (KAC) proposed in [2]. The proposed
methodology is a scalable framework for secure multi-tenant
FPGA on the cloud.

The rest of the paper is organized as follows. In Section II,
we discuss the Key-Aggregate Cryptosystem (KAC) [3] with the

2771-2508/23/$31.00 ©2023 IEEE
DOI 10.l 109/DSD60849.2023.00102

714

relative architecture. In Section III, we describe the system basic
implementation. In section IV the implementation results are
given while section V concludes the paper.

II. SECURITY IN AMULTITENANCYENVIRONMENT

The heart of the proposed methodology is the Key­
Aggregation-Cryptosystem (KAC) [2-3] that can offer both
bitstream encryption / decryption for different tenants and
efficient key-management. The scheme of the KAC is shown in
Fig. 1.

According to [2] each plaintext message is associated with a
unique identity Id that is encrypted with a common master
public-key (mpk), generated by the system administrator. The
administrator, which is part of the cloud security system
frontend and interacts with both the cloud security system and
the user environment, also generates a master secret-key (msk),
that is used to generate decryption keys for the plaintexts. The
basic advantage of KAC is its ability to generate constant-size
aggregate decryption keys corresponding to identities Id], Id2, ·
· · , Idn. Then, it is possible to generate a constant-size aggregate
decryption key ski for the i-th ciphertext. For example, in Fig. 1
the individual secret-keys skl and skn for the identities Idl and
Idn are compressed into a single aggregate-key skl,n, which has
the same size as either of skl and skn, that can decrypt the
ciphertexts CJ and Cn, but not C2. KAC operation is based on
Elliptic Curves.

Plaintexts ldl 0 Ml ld20 M2 ldn,Mn

Ciphertexts

Ml Failure? Mn

Fig. 1. Key-Aggrernrnent Cryptosystern

In order to setup the security mechanism in a multitenant
environment some steps are executed [2]. Firstly, the FPGA
vendor sets up a KAC system using a master public key and a
master secret key that are generated byself. Each FPGA divided

Authorized licensed use limited to: University of Peloponnisos. Downloaded on July 19,2024 at 11:10:48 UTC from IEEE Xplore. Restrictions apply.

715

into a n partitions, with each partition has a unique identity Id.
Each partition corresponds to an independent virtual FPGA from
the tenant point of view. In addition, it contains a Virtual
Machine that can be used for the configuration of the tenant and
a KAC decryption engine, that is pre-programmed to use a single
aggregate decryption key sk that corresponds to the Id as a host.
Then, each tenant encrypts its bitstream using an AES128 key.
This AES128 key had been additionally encrypted using the
master public key of the KAC. The second encryption is
performed under the identity Id of the partition assigned to the
tenant. The bitstream encryption occurs inside the FPGA in two
steps. Each FPGA is provided with a single KAC decryption
core, while each individual partition is provided with its own
AES128 decryption core. The KAC decryption engine is first
used to recover the AES128 key chosen by the tenant. The
recovered key is subsequently used to decrypt any number of
encrypted bitstreams and program the FPGA partition with the
same.

Encryption and decryption keys are created for unique data
that the user provides. Only a particular set of decryption keys
are shared so that the data can be decrypted. A public-key
encryption system which is called a Key-Aggregate
cryptosystem (KAC) is presented. This system produces
constant size ciphertexts. Any arrangement of secret keys can be
aggregated and make them into a single key, which has the same
power of the keys that are being used. This total key can then be
sent to the others for decoding of a ciphertext set and remaining
encoded documents outside the set stays private. The encrypted
data is stored in the cloud, but the problem comes with how to
share the keys securely so that all the unnecessary information
should not be exposed to the user. If the sender encrypts all the
information using a single key and sends it to the receiver, he is
exposing all the important information to the receiver, which is
a breach of privacy. Also, ifhe sends each key for the encrypted
data, then he needs to send decryption keys for each encrypted
data. This is acceptable when the number of keys is small, but
for thousands of keys, separate storage needs to be maintained,
and these must be sent through a secure channel, where there
might be a chance for data leakage. So, to overcome this
problem, a key aggregate cryptosystem concept is developed
where a single aggregate key of constant size is formed from the
set of keys and sent to the receiver [8]. The key aggregate
cryptosystem is one of the most efficient, scalable and secured
techniques that can be implemented in cloud storage. A key
aggregate cryptosystem is a public key cryptosystem in which
all of the sets of secret keys are aggregated into a single key, and
the aggregated key has the power of all the secret keys [8].
proposed a leakage resilient key aggregate cryptosystem with
auxiliary input based on the KAC scheme [9] .

We propose a complete user-cloud encryption system based
on FPGA technologies. User security is based on encryption
with RSA and KAC techniques that are exclusively in user
hands.

III. BASIC IMPLEMENTATION

The initial design of the proposed system includes the
encryption / decryption core which is based on the ZYNQ /
ZEDBOARD platform [5], and the user interface environment.

715

TABLE 1: Comparison of KAC with Related Schemes [12]

Size of Size of Type of Encryption
System Cipher Text Decryption

Kev
Key assignment

constant
non- symmetric or

schemas constant public key
Symmetric key symmetric key
encryption with compact constant constant
key
Identity based

non-
public key

encryption with compact
constant

constant
kev
Attribute based constant non- public key
encnrotion constant
KAC constant constant public key

A. Aes Core

The operation of the system is based on the capabilities of
the ZEDBOARD platform using the AES IP CORE subsystem
and the ETHERNET interface it supports. This core contains an
128-bit data input, an 32 bit control signal input, an 128-bit data
output, and a 32-bit control signal output.

Fig. 2. Aes IP Core

B. Ethernet Interface

The encryption/decryption system interface is supported via
Ethernet interface by the platform, the image diagram shows
the ETHERNET system chipset which based on the integrated
circuit of the Marvell 88El 518 PHY family and supports
speeds up to 1000 Mbps. Ethernet chipset synchronize in 125
Mhz internal clock. There are two Ethernet MACs in the PS
(Processing System) portion of the Z YNQ device. The first of
these, ETH0 is connected, via the ZYNQ MIO interface,
directly to Marvell Ethernet PHY on the ZEDBOARD using
an RGMII interface. This Ethernet interface is 'free' on the
ZEDBOARD and is what most applications and operating
systems use to connect. The second Ethernet MAC in the
ZYNQ PS, ETHl, cannot be connected directly via the MIO
pins due to their multiplexed nature and the other peripherals
on the ZEDBOARD connected to them. To use the second
Ethernet MAC you would need to route the interface signals
through the PL (Programmable Logic) portion of the ZYNQ
device. Then you would need to connect these signals (as a
GMII interface) to external ZYNQ pins connected to a PHY
that you would have to provide on one of the external
ZEDBOARD connectors such as the FMC connector. It is also
possible to use a PHY with an RGMII interface by using a GMII
to RGMII 'shim' IP within the ZYNQ PL. Unless you need a
second Ethernet port, or have a specific interface requirement

Authorized licensed use limited to: University of Peloponnisos. Downloaded on July 19,2024 at 11:10:48 UTC from IEEE Xplore. Restrictions apply.

716

that the Marvell PHY on the ZEDBOARD does not support,
you will not need to use the second Ethernet MAC

I RJ45 and MAGNETICS I

RX/TX

MARVELL 88E1518 PHY

ZEDBOARD

Fig. 3. Ethernet Chipset

C. The System on Chip

Figure 4 describes the overall architecture of our
ZEDBOARD AES system. In the core part of the system
implementation, both the Ethernet interface and the SD card are
routed directly to the ZYNQ System on Chip (SoC) via MIO
(Multipurpose IO) but do not go through PL (Programmable
Logic). This enabled Xilinx libraries to be used directly at the
PS (Processor System) level, allowing for easier integration of
complex interfaces. The construction of CUSTOM IP [5]
concerning the IP AES block contains several hardware blocks
connected together and a State Machine. This IP block contains
two interfaces: one interface for initializing the IP block by
setting the key and mode (encryption or decryption), another
for streaming the status via the AXI DMA protocol.

During the development process, each of the separate steps
of the AES algorithm was designed as separate AXI4 IP blocks:
using registers for its interface. The basis of the AES system
consists of a well-known and reliable software implementation
of the AES algorithm, Tiny AES in C [4], each hardware step
was checked for accuracy on the ZED BOARD at runtime. After
all the components were completed, a state machine was
designed to handle the flow of data that was rurming the
software in the early stages of development.
Using this methodology helped to separate the implementation
and completion stages, allowing full reliability in the final
design of the block. The CBC mode was implemented
exclusively by the software. Although it is more efficient and
faster to process the additional XOR step in hardware, the
additional complexity required in the given time frame of this
project meant that there was no time for this optimization. Any
client that supports the TCP/IP protocol can connect to the
ZEDBOARD AES system. Once the connection is established,
the host can send a file at any time. If the ZED BOARD AES
system is not ready, the connection will be rejected and no file
transfer will occur. Currently, the system is limited to one
connection at a time. ZEDBOARD AES is a completely self­
contained system. A user can then navigate the device using the
D-pad and OLED display. The system's ability to be network­
enabled over Ethernet allows for flexibility in more
applications, while leveraging the same AES
encryption/decryption infrastructure as SD card functionality.

The performance gain from using hardware acceleration
over a pure software application has been measured to be about
9.8 times faster when the ARM CPU was clocked at 200 MHz

716

[5]. While this gain in performance is significant, it could be
improved even further. Currently the implementation uses
DMA to transfer 4 words each cycle, this requires many calls
to the DMA transfer function and is the major bottleneck of our
system. Ideally we could implement a streaming interface
where the DMA would be instructed to continuously transfer
the entire file instead of 16 byte chunks as in the current
implementation. However, in its current state, it takes about 4
seconds to encrypt or decrypt 10 MB, which is a relatively
satisfactory performance. The maximum file size that can be
processed in the system is 100 MB. Regardless, the entire
application can reach a maximum of 512 MB, which is the
maximum DRR memory available on the ZEDBOARD. The
AES IP Block is constructed from a large subset of self­
contained elements, each of which represents a step in the AES
encryption/decryption algorithm.

ETHERNET INTERFACE
ETHERNET PHY
ETHERNET MAC

AXI BUTTON
AXI LED AXI BUS

OLED DRIVER

SD CARD CONTROLLER
SD CARD

Fig 4. System Architecture

DOR MEMORY
DOR CONTROLLER

AES IP BLOCK

In the file structure and throughout the VHDL code, these
functions remain self-contained and are held together by a
higher-level state machine. In this design, both encryption and
decryption are performed in parallel and the final data output
depends on the mode selected. The hardware performs one
round of encryption per cycle, receives 32 bits of stream data
per cycle, and outputs 32 bits of stream data per cycle.
Therefore, it takes 4 clock cycles to read and send each 16-byte
state. There are many implementations of AES on FPG A on the
web. In this implementation, the AES algorithm, Tiny AES in
C [4] was used as our main reference. Abdeladim Sadiki and
Jevin Sweval's [6] implementations were also used as
secondary references in this component design [6] [7].

IV. IMPLEMENTATIONRESULTS

The implementation results are shown in Table 2. The
analysis describes the FPGA system resources that were
committed.

TABLE 2· HARDWARE RESOURCES
Site Type Used Available Uti1%

Slice LUTs 13171 53200 24.76

LUTas
626

17400 3.60
Memory

Slice Registers 7917 106400 7.44

Slice 4354 13300 32.74

LUT as Logic 12545 53200 23.58

Block RAM tile 2.5 140 1.79

Authorized licensed use limited to: University of Peloponnisos. Downloaded on July 19,2024 at 11:10:48 UTC from IEEE Xplore. Restrictions apply.

717

A. Communication with user interface environment

Streaming interface follows the AXI DMA protocol, with
32-bit wide data, and signal registers to start and end transfers.
The AES state machine controls the "ready" signals that the
DMA protocol uses to send and receive data. An entire 16 bytes
state must be encrypted or decrypted before the next state of data
can be processed. In the current implementation, the IP block
must be reset after completion of each state in order to return it
to the initial step in the state machine. The encryption/decryption
system communication is implemented through an ECHO
SERVER that supports TCP operations and relies on the lwip
libraries available. During the stage of sending information to be
encrypted/decrypted, the user interface system sends the data to
the system in the form of a packet as follows:

TABLE 3 :TRANSJ\1IT PACKET FORM

Raw Data
File Size (4bytes) Mode (4bytes) (max JOO

MB)
The first 4 bytes 4 bytes that make up the mode
include the size of selector (Mode Select Switch), if Data with a
the data (Raw their value is zero (0) the operation

maximum
Data) in bytes of the system concerns the length of
including the 4 encryption of the input data, while

100 MB. bytes of the File in any other situation it concerns the
Size header. decrvotion of the input data.

After the encryption process, the system returns to the user
interface the results in the following format.

TABLE 4: RECEIVE PACKET FORM

File Size (4bytes) Raw Data (max JOO MB)

The first 4 bytes contain the size of Received Data with a
the data (Raw Data) in bytes received. maximum length of 100 MB.

B. Use Case

In case of using encryption of a text file contammg the
phrase "HELLO WORLD", the packet to be transmitted will
contain the header and data information as follows:
The size of the file in 11 bytes, the FILE SIZE header is 4 bytes,
therefore the content of the File Size header is 15 bytes (x0F).
The operation in this particular case concerns information
encryption, therefore the Mode header is zero (x00). The
information of the phrase "HELLO WORLD" that will be sent
to the system has the form: 48454c4c4f20574f524c44. The
packet to be sent via the TCP protocol has the following format
(See Table 5). Immediately after sending the packet, the system
returns the encrypted response via the TCP protocol.

C. User Web Interface

To implement the user interface environment, using
UBUNTU 20 operating system, the WEBMIN platform, which
includes Apache 2, MariaDB, Firewall, all this configuration
was installed on a VPS (ESXI). The user interface allows
uploading a file with a maximum size of 2MB, sending it to the
AES IP CORE for encryption, and then storing the encrypted
file in the user's Home Directory in the Cloud (which is
simulated in the web interface). Also, the interface allows
loading an encrypted file with a maximum size of 2 MB, sending
it to the AES IP CORE for decryption, and then saving the
decrypted file to the user's local disk.

717

Cloud System tested
http://parmenion.marios.gr/

m the following URL:

TABLE 5: TRANSJ\1IT / RECEIVE PACKET FORM EXAMPLE

File Size
Mode (4bytes) Raw Data (max JOO MB) (4bytes)

OF 00 00 00 00 00 00 00 . 48 45 4C 4C 4F 20 57 4F 52 4C 44
TRANSJ\1IT

10 00 00 00
11 11 11 11 0C CS 20 95 SC IC 23 21076AE9 9D
RECEIVE 79 38 52 AO

V. CONCLUSION

In this work, the implementation of a frontend
encryption/decryption system for files in cloud environments is
described in detail. The core of the system is based on
ZEBOARD FPGA platform, on which SoC was implemented
and support security, encryption and decryption functions via
SD card or ETHERNET. The basis of the AES system consists
of a well-known and reliable software implementation of the
AES algorithm, Tiny AES in C. The web user interface allows
uploading and download a file from or to the user's Home
Directory in the Cloud. It should be noted that an important
approach of the work is also the definition of the
encryption/decryption model (KAC) based on the needs and
characteristics of the computing cloud, which will also
constitute the road map for the further approach

REFERENCES

[I] K. Vipin, S. A. Fahmy, "FPGA Dynamic and Partial Reconfiguration: A
Survey of Architectures, Methods, and Applications", ACM Computing
Surveys, Vol. 51, No. 4, 2019.

[2] A. Bag, S. Patranabis, D. Basu Roy and D. Mukhopadhyay,
"Cryptographically Secure Multi-Tenant Provisioning of FPGAs",
Security, Privacy, and Applied Cryptography Engineering. SPACE 2020,
Lecture Notes in Computer Science, Vol. 12586, 2020.

[3] S. Patranabis, Y. Shrivastava and D. Mukhopadhyay, "Provably Secure
Key-Aggregate Cryptosystems with Broadcast Aggregate Keys for
Online Data Sharing on the Cloud", IEEE Transactions on Computers,
vol. 66, no. 5, pp. 891-904, I May 2017.

[4] "Tiny AES in C," [Online]. Available: https: //github.com/kokke/tiny­
AES-c.

[5] T. jason, D. Dixon "AES File Encryption and Decryption" [Online].
Available: https ://github.com/jasonrtsang/ZEDBOARD aes

[6] A. Sadiki, "A VHDL implementation of the AES algorithm", [Online].
Available:https://github.com/ AbdeladimSadiki/ AES-VHDL.

[7] J. Sweval, "A VHDL implementation of 128 bit AES encryption with a
PCie interface", [Online]. Available: https://github.com/jevinskie/aes­
over-pcie

[8] C. K. Chu, S. S. Chow, W. G. Tzeng, J. Zhou, R. H. Deng, "Key­
aggregate cryptosystem for scalable data sharing in cloud storage", IEEE
Transactions on Parallel and Distributed Systems, Vol. 25, No. 2, 2014.

[9] Cui, B., Liu, Z., Wang. "Key-aggregate searchable encryption (KASE)
for group data sharing via cloud storage", IEEE Transactions on
Computers, Vol. 65, No. 8, 2016.

[10] Q. Gan, X. Wang, D. Wu, "Revocable key-aggregate cryptosystem for
data sharing in cloud. Security and Communication Networks", Security
and Communication Networks, Vol. 2017, 2007.

[11] F. Guo, Y. Mu, Z. Chen, "Identity-based encryption: How to decrypt
multiple ciphertexts using a single decryption key", In Proceedings of
Pairing-Based Cryptography 2007, Lecture Notes in Computer Science,
Vol 4575, 2007.

[12] K. Kate and S. D. Potdukhe, "Data sharing in cloud storage with key­
aggregate cryptosystem", International Journal of Engineering Research
and General Science, Vol. 2, No. 6, 2014.

Authorized licensed use limited to: University of Peloponnisos. Downloaded on July 19,2024 at 11:10:48 UTC from IEEE Xplore. Restrictions apply.

