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Abstract— The primary goal of this work is to introduce possible 

hardware solutions regarding cryptographic key management and 

generation, which ensure uniqueness, high security standards, and 

of course applicability in multi-tenancy environments over 5G 

networks.  It is also proposed to design an integrated system that 

combines elliptic curve key generation, client content encryption, 

and decryption process with FPGA devices, and a user interface that 

can be implemented with conventional web implementation methods. 

This paper will describe a cryptographic key generation system with 

FPGA that can work on Zynq or ultra-scale devices. Essentially this 

is a hardware IP block that performs the computation of the scalar 

multiplication [k]P on any elliptic curve defined in a finite field of 

characteristic p > 3. Intended as a hardware accelerator embedded 

in a silicon matrix to ensure highly reliable and yet efficient elliptic 

curve signature authentication and secure Diffie-Hellman key 

exchange.  
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I. INTRODUCTION 

The advent of 5G networks has revolutionized the landscape 
of wireless communication, promising unprecedented speed, 
reduced latency, and the capacity to connect a vast number of 
devices simultaneously. This technological leap has opened 
new avenues for various applications, including cloud services.  

One of the most important problems that arise is the security 
of data traffic in cloud services in such a way that there are clear 
guarantees that the user is the only key to access this data and 
that the systems are completely safe and reliable. It is important 
to mention that security issues concern all networks used today 
for data transfer, especially those that are wireless and 
accessible by anyone such as 5G networks. 

Also, a promising approach to enhancing security in FPGA 
cloud environments is the utilization of elliptic curve 
cryptography (ECC). ECC is renowned for its high security per 
bit, making it an ideal candidate for resource-constrained 
environments like FPGAs. The mathematical properties of 
elliptic curves provide strong encryption with smaller key sizes 
compared to traditional methods, thus offering both security 
and efficiency. 

This paper explores the intersection of FPGA cloud security, 
elliptic curve cryptography, and 5G networks. It aims to 

provide a comprehensive overview of the current state of FPGA 
cloud security, examine the specific challenges posed by 5G 
connectivity, and evaluate the potential of ECC in addressing 
these challenges. The discussion will include an analysis of the 
security vulnerabilities inherent in FPGA deployment over 5G, 
the role of ECC in mitigating these risks, and the practical 
considerations for implementing ECC on FPGAs within a cloud 
infrastructure. 

By investigating these aspects, this paper seeks to contribute 
to the development of robust security frameworks that can 
leverage the strengths of FPGAs and ECC, while harnessing the 
transformative capabilities of 5G networks. Ultimately, the goal 
is to pave the way for secure and efficient FPGA-based cloud 
solutions that can meet the demands of the next generation of 
wireless communication. 

II. ΕLIPTIC CURVES IN A MULTITENANCY SYSTEM 

An elliptic curve over a field K is formed by the set of points   

P = (x, y) ∈ K satisfying the short-Weierstrass equation: 

E/K: y2 = x3 + ax + b.  to which one must also add the point at 
infinity, denoted O. The numbers x and y are the affine 
coordinates of point P. In this solution, the field K denotes a 
prime field of characteristic p > 3, so K = Fp. A necessary and 
sufficient condition of the existence of E/K is that quantity Δ ̸ = 
0, where Δ = −16(4a3 + 27b2).  An elliptic curve presents the 
mathematical structure of an additive group. What makes 
elliptic curves particularly useful in cryptographic applications 
[1] is the fact that the discrete logarithm problem in this case is 
particularly tight compared to other systems that have been 
studied. As a result, with shorter key lengths, comparable levels 
of security can be achieved. The basic operation in elliptic 
curve cryptography is the scalar multiplication [15], that is, 

given a point P ∈ E/Fp called base point, one has to compute: 

Q = [k]P = P + P + · · · + P. (K times) [2]. 

A complete Key -Aggregation - Cryptosystem (KAC) that 
can offer both bitstream encryption/decryption for different 
tenants and efficient key management. is described in Fig. 1.  

Each plaintext message is associated with a unique identity 
Id encrypted with a common master public key (mpk), 
generated by the system administrator [12 - 13], The 
administrator, which is part of the cloud security system 
frontend and interacts with both the cloud security system and 
the user environment, also generates a master secret key (msk), 



that is used to generate decryption keys for the plaintexts. The 
basic advantage of KAC is its ability to generate constant-size 
aggregate decryption keys corresponding to identities Id1, Id2, 
· · ·, Idn. Then, it is possible to generate a constant-size 
aggregate decryption key ski for the i-th ciphertext. For 
example, in Fig. 1 the individual secret keys sk1 and skn for the 
identities Id1 and Idn are compressed into a single aggregate-
key sk1 n, which has the same size as either of sk1 and skn, that 
can decrypt the ciphertexts C1 and Cn, but not C2. KAC 
operation is based on Elliptic Curves. [5]. 

 

 
Fig. 1. Key-Aggregation Cryptosystem 

 

Comparing the two main key management systems, elliptic 
curve, and RSA, the following main conclusions were drawn [2 
- 3] (see Table. 1 and Table. 2): 

 
TABLE 1: Advantages between Elliptic Curves and RSA 

Characteristics ECC RSA 

Very fast key generation *  

Smaller keys, cipher-texts, and 

signatures. 
*  

Fast signatures *  

Signatures can be computed in two 
stages, allowing latency much 

lower. 

 

* 
 

Moderately fast encryption and 
decryption. 

*  

Than inverse throughput. *  

Right protocols for authenticated 

key exchange (FH-ECMQV et al.). 

 

* 
 

Better US government support. *  

Binary curves are fast in hardware. *  

Unique curves with bilinear 

pairings allow new-fangled crypto 

 

* 
 

Signature generation is faster with 

RSA. 
*  

More comfortable to implement 
than ECC. 

 * 

Easier to understand.  * 

Signing and decryption are similar, 

encryption and verification are 
similar. 

 * 

Characteristics ECC RSA 

Widely deployed, better industry 

support. 
 * 

 

TABLE 2: Disadvantages between Elliptic Curves and RSA 

Characteristics ECC RSA 

Complicated and tricky to 

implement securely, mainly the 

standard curves. 

*  

Standards aren't state-of-the-art, 

particularly ECDSA, which is a 

hack compared to Schnorr 
signatures. 

*  

Newer algorithms could 

theoretically have unknown 
weaknesses. Binary curves are 

slightly scary. 

*  

Signing with a broken or 

compromised random number 
generator compromises the key. 

 

* 
 

It still has some patent problems, 

especially for binary curves. It 
might be costly... 

 

* 
 

Public key operations (e.g., 

signature verification, as opposed 
to signature generation) are slow 

with ECC. 

 

 

* 

 

Very slow key generation.  * 

Slow signing and decryption, 
which are slightly tricky to 

implement securely. 

 * 

The two-part key is vulnerable to 
GCD attack if poorly 

implemented. 

 * 

Public key operations (e.g., 
signature verification, as opposed 

to signature generation) are faster 

with RSA (8000 ECDSA 

verifications per second, vs. 20000 

RSA verifications per second). 

 * 

 
According to the above comparative data, most of the 

disadvantages of the ECC system are related to the difficulty of 
understanding and implementing such a system and less to 
issues concerning the reliability of its operation and its 
performance, in any case ECC excels significantly in speed and 
reliability, also some of the disadvantages of ECC do not affect 
its implementation in FPGA Cloud Security [4]. 

III. BASIC IMPLEMENTATION 

The initial design of the proposed system includes the ECC 

generator, i.e. the core based on the ZYNQ platform like 7020- 

G. 

A. Core 

The IP is divided into several structural elements where 
functionally one is based on the other, as the Fig. 2 shows. The 
top-level component ecc_axi handles the AXI interface, holds 
the register bank, and services requests issued by software. 
Below is the ecc_scalar that handles the main hardware state 
machine. ecc_curve which is a tiny CPU operation only, runs 
from a dedicated microcode memory called ecc_curve_iram. 
The content of this memory is read-only and set at synthesis 
time (though debug mode allows to patch it at runtime) through 



the static link of a bunch of assembly source files. CPU is very 
simple, it has a 3-stage pipeline, no stack or stack pointer, no 
general  purpose registers or register window, no cache, no 
memory hierarchy, no I/O, no calling convention, no exception, 
no interrupt, no level privileges. Below the ecc_curve element 
is the ecc_fp element which can be thought of as the Arithmetic 
Logic Unit (ALU) of ecc_curve. The instructions are retrieved 
from the microcode memory with ecc_curve decoding and then 
passed to the ecc_fp to be executed from its internal memory 
(called "IP internal large number memory", this is the 
ecc_fp_dram component) which by default can hold 32 large 
numbers (each with a size of nn bits). There is no memory 
management unit, so all addresses are physical, both for data 
and instructions. The commands supported by ecc_curve fall 
into two categories: arithmetic operations and branch entries.  

The main arithmetic operations are addition (NNADD) 
subtraction (NNSUB), Montgomery multiplication (FPREDC) 
left and right bit shifts (NNSLL and NNSRL), bitwise XOR 
(NNXOR). There is also an instruction named NNRND which 
is used to generate any large random number. Arithmetic is 
signed and uses two's complement representation. The 
instructions NNADD and NNSUB should be considered to 
operate only on integers while FPREDC operates on field 
elements. In other words, neither NNADD nor NNSUB 
perform direct reduction, while the Montgomery multiplication 
performed by the FPREDC instruction by default preserves the 
reduced form of its inputs in its output. Whenever the result of 
an addition or subtraction requires a decrement, it is executed 
with a supplementary conditional statement of subtraction 
and/or addition, but always in constant time. This is made 
possible by a hardware mechanism called on-the-fly correction 
implemented inside ecc_curve. All instructions are executed 
synchronously (ie the destination operand of instruction i is 
updated in memory before instruction i+ 1 is decoded) with the 
exception of Montgomery multiplications. The FPREDC 
instruction is handled asynchronously, which means that the 
REDC function is published by ecc_fp to a dedicated hardware 
Montgomery Multiplier, that is the mm_ndsp element however, 
support is for mm_ndsp instances 1 through 4 of mm_ndsp 
however Co-Z arithmetic allows to reduce this to 2 without 
creating any wait-state that could be caused by dependency 
between intermediate terms. The number of mm_ndsp 
instances can still be reduced to one if you want to reduce 
design area, obviously at the cost of a reduced performance.  

 

 
Fig. 2. ECC hardware architecture 

 
The number of multiplier-accumulators (usually named 

«DSP-blocks» in the FPGA ecosystem) inside each component 
mm_ndsp is also configurable at synthesis time so as to allow 
you to set your own cursor in the area-speed trade-off. If 
software requires synchronization between instructions, it can 
use the special BARRIER instruction to guarantee strict 
ordering. 

IPECC incorporates its own True Random Number 
Generator, based on the ES–TRNG [14] design from KU-
Leuven No post-processing functionality is provided with IP, 
although the HDL structure was made to facilitate the 
integration of a custom one in a straightforward manner. A 
FIFO set is used to temporarily store the random data. The raw 
random bits are initially stored in a raw random FIFO. They are 
then pulled back and assembled to form internal random 
numbers of different word sizes and then pushed back into one 
of 4 possible downstream FIFOs, according to an arbitration 
schedule. If you are familiar with the standard AIS31 
terminology from BSI, the first FIFO stores what are called raw 
random bits while the four downstream FIFOs store what are 
called internal random numbers (IRNs). But IPECC provided 
as is does not include any post-processing functions, so there is 
no real difference between raw random bits and internal random 
numbers other than their width. If post-processing is applied 
(which is recommended) it should be considered that this is a 
cryptographic hardware design, which usually requires the 
design of a hash function. The new logic should then be placed 
between the raw FIFO random numbers and the internal 
random numbers. Each of the 4 FIFOs serves its random 
numbers to a randomness-based IP element (acting as a client) 
to implement one of the side-channel countermeasures. These 
components are: ecc_axi (for in-place scaling of the scalar), 
ecc_curve (for internal shuffling of the 4 X and Y coordinates 
of R0 and R1, a feature closely related to the patching 
mechanism described above), ecc_fp_dram_sh (this is the 
which replaces ecc_fp_dram when there is a randomization 
countermeasure in the IP to implement full randomization of 
the large number memory) and ecc_fp (to implement the 
NNRND instruction). The RTL code will then automatically 
build a binary routing tree that includes all instances of the raw 
TRNG in order to pool their different binary outputs and 
multiplex their input into the raw random FIFO. In order to 
allow evaluation of the entropy of a particular plan, IP allows 
software to read the contents of the raw random FIFO (only 
when configured in debug mode), a feature that is supposed to 
be interesting only for FPGA targets. 

IPECC is wrapped as AXI4-lite compatible IP, which in 
practice means that it can connect directly to any AXI-on-a-
chip based interfacing system, such as an ARM or RISC-V 
application processor. Zedboard includes ARM CORTEX – A9 
as a powerful System Processing Unit. IPECC then becomes a 
cryptographic peripheral memory mapped to the system's 
overall physical address space and used in conjunction with a 
software driver running on the CPU, can be programmed to 
perform [k]P acceleration calculations on behalf of the 
processor without requiring further CPU resource. Given the 
relatively large computation time required to perform scalar 
multiplication, and given the small amount of data required to 



transfer input and output data to and from IP, no DMA interface 
is required, and therefore IPECC is presented only as an AXI 
slave/secondary interface, IPECC supports any elliptic curve in 
primary fields (prime or complex order) as long as it is defined 
by the Weierstrass equation. There is a one-to-one 
correspondence between all elliptic curves and their description 
by the Weierstrass equation, however, it is not always trivial to 
translate curves used in some standard elliptic curve protocols 
without being explicitly defined by the Weierstrass equation. 
the (a, b) representation required by IPECC. For such curves, 
one should consider using IPECC together with the highly 
flexible libecc software library (and for other curves as well), 
as it automatically and transparently performs the mathematical 
conversion to Weierstrass form. Additionally, the highest level 
of elliptic curve operations that IPECC can do is to calculate 

[k]P. It does not implement any Elliptic Curve Signature 
Protocol or Elliptic Curve Key Exchange Protocol. If you need 
to either generate or verify elliptic curve signatures based on 
any of the EC*DSA type signature schemes, you should 
consider using a hash function on top of the [k]P calculation, 
either designing software or using an accelerated IP with 
hardware hash function. In fact, this is all the more reason why 
libecc should be considered as the main software component 
over IP [19]. 

B. Implementation 

Fig. 3 shows the internal Block diagram and their 

interconnection. 

 

Fig.  3. Block Diagram 

 

Fig.  4. Simulation 
 

 



 

 

 Fig. 4 shows the results of the simulation using the Vivado 
2023.2 environment software. The random number generator 
was simulated using a text input file with random number 
values. 

 Fig. 5 shows the simulation results in the log file. The stages 
of calculations in each cycle of the system are clearly visible, the 
input data and the results both in each operating cycle as well as 
in the final stage. 

 

 

Fig.  5. Simulation Log 

 

The implementation results are shown in Table 3. The analysis 
describes the FPGA ZYNQ 7020 – G system resources that 
were committed. 

 
TABLE 3: Hardware Resources Zynq 7020 – G 

Site Type Used Available Util% 

Slice LUTs 4957 53200 9.31 

LUT as Memory 206 17400 1.18 

Slice Registers 5226 106400 4.91 

Slice 1863 13300 14.00 

LUT as Logic 4751 53200 8.93 

Block RAM tile 13 140 9.28 

 

As the Table 3 shows the hardware implementation of the 
proposed system cover a very small number of FPGA resources.  

C. Use Case 

 The use of a key management system with the Elliptic 
Curves technique analyzed in this work could be integrated into 
an encryption/decryption system as it has been implemented 
today [5], combined with a friendly user interface that can be 
created with the traditional programming tools for web 
applications, and to constitute as a frontend between a 

communication system using 5G technology and cloud services 
(see Fig. 6).  

 The deployment of Field Programmable Gate Arrays 
(FPGAs) in cloud environments over 5G networks offers 
significant advantages in terms of performance, flexibility, and 
scalability. However, the integration of FPGAs in these settings 
also introduces new security challenges. This proposal outlines 
a security framework to enhance the protection of FPGA-based 
cloud services using Elliptic Curve Cryptography (ECC), 
leveraging the high performance and low latency capabilities of 
5G networks. The rapid adoption of 5G technology facilitates 
the widespread use of cloud services, including FPGA-as-a-
Service (FaaS). 

 

 

Fig. 6. A. complete FPGA Frontend Security Cloud System 

over 5G with User and Admin control Interface 

 
However, traditional security models are inadequate for the 

dynamic and resource-constrained nature of FPGAs in multi-
tenant cloud environments. ECC, known for its strong security 
per bit and efficiency, is well-suited for addressing these 
challenges. Security Challenges in 5G FPGA Cloud 
Environments are : a)  Multi-Tenancy Risks: In multi-tenant 
settings, malicious tenants can exploit shared resources to 
launch attacks such as side-channel and fault injection attacks 
[9 - 11], b) Data Confidentiality and Integrity: Ensuring that 
data processed by FPGAs is not exposed or tampered with 
during transmission over 5G networks is crucial and c)  
Bitstream Protection: Protecting FPGA bitstreams from 
unauthorized access and modification is essential to prevent IP 
theft and malicious reconfigurations. The main points of the 
proposal to implement such a system based on the key system 
with elliptic curves are a) ECC's smaller key sizes provide 
strong security with less computational overhead, suitable for 
FPGA environments, b) Implement ECC-based digital 
signatures to ensure the authenticity and integrity of data and 
bitstreams. Reinforcement techniques could be integrated into 
the system with FPGA systems that can offer services such as 
a) Intrusion Detection and Monitoring, and b) Implementing 
monitoring mechanisms to detect anomalies and potential 
attacks based on unusual patterns of FPGA resource usage.  

IV. CONCLUSION 

In this work, the implementation of an elliptic curve-based 
cryptographic key generation system that can be combined with 
frontend encryption/decryption systems for files in cloud 
environments is detailed. The core of the system is based on the 
Zynq FPGA platform, on which the SoC was implemented and 



supports unique key pair generation functions. Additionally 
fortify the security of FPGA deployments in 5G cloud 
environments using ECC, addressing critical vulnerabilities 
while maintaining performance efficiency. By implementing a 
robust security architecture, we can leverage the full potential 
of FPGAs and 5G technology securely and reliably. 
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