
FPGA-based Cloud Security Solutions for 5G

Νetworks
Marios Papadopoulos

Electrical and Computer Engineering

University of the Peloponnese

Patras, Greece

E-mail: m.papadopoulos@go.uop.gr

Kostas Lampropoulos

Electrical and Computer Engineering

University of Patras

Patras, Greece

E-mail: klamprop@ece.upatras.gr

Paris Kitsos

Electrical and Computer Engineering

University of Patras

Electrical and Computer Engineering

University of the Peloponnese

Patras, Greece

E-mail: pkitsos@upatras.gr

Abstract— The primary goal of this work is to introduce possible

hardware solutions regarding cryptographic key management and

generation, which ensure uniqueness, high security standards, and

of course applicability in multi-tenancy environments over 5G

networks. It is also proposed to design an integrated system that

combines elliptic curve key generation, client content encryption,

and decryption process with FPGA devices, and a user interface that

can be implemented with conventional web implementation methods.

This paper will describe a cryptographic key generation system with

FPGA that can work on Zynq or ultra-scale devices. Essentially this

is a hardware IP block that performs the computation of the scalar

multiplication [k]P on any elliptic curve defined in a finite field of

characteristic p > 3. Intended as a hardware accelerator embedded

in a silicon matrix to ensure highly reliable and yet efficient elliptic

curve signature authentication and secure Diffie-Hellman key

exchange.

Keywords— FPGA, Cloud Encryption, elliptic curve cryptography,

Montgomery multiplication, True Random Number Generator,

Multitenancy System, 5G networks.

I. INTRODUCTION

The advent of 5G networks has revolutionized the landscape
of wireless communication, promising unprecedented speed,
reduced latency, and the capacity to connect a vast number of
devices simultaneously. This technological leap has opened
new avenues for various applications, including cloud services.

One of the most important problems that arise is the security
of data traffic in cloud services in such a way that there are clear
guarantees that the user is the only key to access this data and
that the systems are completely safe and reliable. It is important
to mention that security issues concern all networks used today
for data transfer, especially those that are wireless and
accessible by anyone such as 5G networks.

Also, a promising approach to enhancing security in FPGA
cloud environments is the utilization of elliptic curve
cryptography (ECC). ECC is renowned for its high security per
bit, making it an ideal candidate for resource-constrained
environments like FPGAs. The mathematical properties of
elliptic curves provide strong encryption with smaller key sizes
compared to traditional methods, thus offering both security
and efficiency.

This paper explores the intersection of FPGA cloud security,
elliptic curve cryptography, and 5G networks. It aims to

provide a comprehensive overview of the current state of FPGA
cloud security, examine the specific challenges posed by 5G
connectivity, and evaluate the potential of ECC in addressing
these challenges. The discussion will include an analysis of the
security vulnerabilities inherent in FPGA deployment over 5G,
the role of ECC in mitigating these risks, and the practical
considerations for implementing ECC on FPGAs within a cloud
infrastructure.

By investigating these aspects, this paper seeks to contribute
to the development of robust security frameworks that can
leverage the strengths of FPGAs and ECC, while harnessing the
transformative capabilities of 5G networks. Ultimately, the goal
is to pave the way for secure and efficient FPGA-based cloud
solutions that can meet the demands of the next generation of
wireless communication.

II. ΕLIPTIC CURVES IN A MULTITENANCY SYSTEM

An elliptic curve over a field K is formed by the set of points

P = (x, y) ∈ K satisfying the short-Weierstrass equation:

E/K: y2 = x3 + ax + b. to which one must also add the point at
infinity, denoted O. The numbers x and y are the affine
coordinates of point P. In this solution, the field K denotes a
prime field of characteristic p > 3, so K = Fp. A necessary and
sufficient condition of the existence of E/K is that quantity Δ ̸ =
0, where Δ = −16(4a3 + 27b2). An elliptic curve presents the
mathematical structure of an additive group. What makes
elliptic curves particularly useful in cryptographic applications
[1] is the fact that the discrete logarithm problem in this case is
particularly tight compared to other systems that have been
studied. As a result, with shorter key lengths, comparable levels
of security can be achieved. The basic operation in elliptic
curve cryptography is the scalar multiplication [15], that is,

given a point P ∈ E/Fp called base point, one has to compute:

Q = [k]P = P + P + · · · + P. (K times) [2].

A complete Key -Aggregation - Cryptosystem (KAC) that
can offer both bitstream encryption/decryption for different
tenants and efficient key management. is described in Fig. 1.

Each plaintext message is associated with a unique identity
Id encrypted with a common master public key (mpk),
generated by the system administrator [12 - 13], The
administrator, which is part of the cloud security system
frontend and interacts with both the cloud security system and
the user environment, also generates a master secret key (msk),

that is used to generate decryption keys for the plaintexts. The
basic advantage of KAC is its ability to generate constant-size
aggregate decryption keys corresponding to identities Id1, Id2,
· · ·, Idn. Then, it is possible to generate a constant-size
aggregate decryption key ski for the i-th ciphertext. For
example, in Fig. 1 the individual secret keys sk1 and skn for the
identities Id1 and Idn are compressed into a single aggregate-
key sk1 n, which has the same size as either of sk1 and skn, that
can decrypt the ciphertexts C1 and Cn, but not C2. KAC
operation is based on Elliptic Curves. [5].

Fig. 1. Key-Aggregation Cryptosystem

Comparing the two main key management systems, elliptic
curve, and RSA, the following main conclusions were drawn [2
- 3] (see Table. 1 and Table. 2):

TABLE 1: Advantages between Elliptic Curves and RSA

Characteristics ECC RSA

Very fast key generation *

Smaller keys, cipher-texts, and

signatures.
*

Fast signatures *

Signatures can be computed in two
stages, allowing latency much

lower.

*

Moderately fast encryption and
decryption.

*

Than inverse throughput. *

Right protocols for authenticated

key exchange (FH-ECMQV et al.).

*

Better US government support. *

Binary curves are fast in hardware. *

Unique curves with bilinear

pairings allow new-fangled crypto

*

Signature generation is faster with

RSA.
*

More comfortable to implement
than ECC.

 *

Easier to understand. *

Signing and decryption are similar,

encryption and verification are
similar.

 *

Characteristics ECC RSA

Widely deployed, better industry

support.
 *

TABLE 2: Disadvantages between Elliptic Curves and RSA

Characteristics ECC RSA

Complicated and tricky to

implement securely, mainly the

standard curves.

*

Standards aren't state-of-the-art,

particularly ECDSA, which is a

hack compared to Schnorr
signatures.

*

Newer algorithms could

theoretically have unknown
weaknesses. Binary curves are

slightly scary.

*

Signing with a broken or

compromised random number
generator compromises the key.

*

It still has some patent problems,

especially for binary curves. It
might be costly...

*

Public key operations (e.g.,

signature verification, as opposed
to signature generation) are slow

with ECC.

*

Very slow key generation. *

Slow signing and decryption,
which are slightly tricky to

implement securely.

 *

The two-part key is vulnerable to
GCD attack if poorly

implemented.

 *

Public key operations (e.g.,
signature verification, as opposed

to signature generation) are faster

with RSA (8000 ECDSA

verifications per second, vs. 20000

RSA verifications per second).

 *

According to the above comparative data, most of the

disadvantages of the ECC system are related to the difficulty of
understanding and implementing such a system and less to
issues concerning the reliability of its operation and its
performance, in any case ECC excels significantly in speed and
reliability, also some of the disadvantages of ECC do not affect
its implementation in FPGA Cloud Security [4].

III. BASIC IMPLEMENTATION

The initial design of the proposed system includes the ECC

generator, i.e. the core based on the ZYNQ platform like 7020-

G.

A. Core

The IP is divided into several structural elements where
functionally one is based on the other, as the Fig. 2 shows. The
top-level component ecc_axi handles the AXI interface, holds
the register bank, and services requests issued by software.
Below is the ecc_scalar that handles the main hardware state
machine. ecc_curve which is a tiny CPU operation only, runs
from a dedicated microcode memory called ecc_curve_iram.
The content of this memory is read-only and set at synthesis
time (though debug mode allows to patch it at runtime) through

the static link of a bunch of assembly source files. CPU is very
simple, it has a 3-stage pipeline, no stack or stack pointer, no
general purpose registers or register window, no cache, no
memory hierarchy, no I/O, no calling convention, no exception,
no interrupt, no level privileges. Below the ecc_curve element
is the ecc_fp element which can be thought of as the Arithmetic
Logic Unit (ALU) of ecc_curve. The instructions are retrieved
from the microcode memory with ecc_curve decoding and then
passed to the ecc_fp to be executed from its internal memory
(called "IP internal large number memory", this is the
ecc_fp_dram component) which by default can hold 32 large
numbers (each with a size of nn bits). There is no memory
management unit, so all addresses are physical, both for data
and instructions. The commands supported by ecc_curve fall
into two categories: arithmetic operations and branch entries.

The main arithmetic operations are addition (NNADD)
subtraction (NNSUB), Montgomery multiplication (FPREDC)
left and right bit shifts (NNSLL and NNSRL), bitwise XOR
(NNXOR). There is also an instruction named NNRND which
is used to generate any large random number. Arithmetic is
signed and uses two's complement representation. The
instructions NNADD and NNSUB should be considered to
operate only on integers while FPREDC operates on field
elements. In other words, neither NNADD nor NNSUB
perform direct reduction, while the Montgomery multiplication
performed by the FPREDC instruction by default preserves the
reduced form of its inputs in its output. Whenever the result of
an addition or subtraction requires a decrement, it is executed
with a supplementary conditional statement of subtraction
and/or addition, but always in constant time. This is made
possible by a hardware mechanism called on-the-fly correction
implemented inside ecc_curve. All instructions are executed
synchronously (ie the destination operand of instruction i is
updated in memory before instruction i+ 1 is decoded) with the
exception of Montgomery multiplications. The FPREDC
instruction is handled asynchronously, which means that the
REDC function is published by ecc_fp to a dedicated hardware
Montgomery Multiplier, that is the mm_ndsp element however,
support is for mm_ndsp instances 1 through 4 of mm_ndsp
however Co-Z arithmetic allows to reduce this to 2 without
creating any wait-state that could be caused by dependency
between intermediate terms. The number of mm_ndsp
instances can still be reduced to one if you want to reduce
design area, obviously at the cost of a reduced performance.

Fig. 2. ECC hardware architecture

The number of multiplier-accumulators (usually named

«DSP-blocks» in the FPGA ecosystem) inside each component
mm_ndsp is also configurable at synthesis time so as to allow
you to set your own cursor in the area-speed trade-off. If
software requires synchronization between instructions, it can
use the special BARRIER instruction to guarantee strict
ordering.

IPECC incorporates its own True Random Number
Generator, based on the ES–TRNG [14] design from KU-
Leuven No post-processing functionality is provided with IP,
although the HDL structure was made to facilitate the
integration of a custom one in a straightforward manner. A
FIFO set is used to temporarily store the random data. The raw
random bits are initially stored in a raw random FIFO. They are
then pulled back and assembled to form internal random
numbers of different word sizes and then pushed back into one
of 4 possible downstream FIFOs, according to an arbitration
schedule. If you are familiar with the standard AIS31
terminology from BSI, the first FIFO stores what are called raw
random bits while the four downstream FIFOs store what are
called internal random numbers (IRNs). But IPECC provided
as is does not include any post-processing functions, so there is
no real difference between raw random bits and internal random
numbers other than their width. If post-processing is applied
(which is recommended) it should be considered that this is a
cryptographic hardware design, which usually requires the
design of a hash function. The new logic should then be placed
between the raw FIFO random numbers and the internal
random numbers. Each of the 4 FIFOs serves its random
numbers to a randomness-based IP element (acting as a client)
to implement one of the side-channel countermeasures. These
components are: ecc_axi (for in-place scaling of the scalar),
ecc_curve (for internal shuffling of the 4 X and Y coordinates
of R0 and R1, a feature closely related to the patching
mechanism described above), ecc_fp_dram_sh (this is the
which replaces ecc_fp_dram when there is a randomization
countermeasure in the IP to implement full randomization of
the large number memory) and ecc_fp (to implement the
NNRND instruction). The RTL code will then automatically
build a binary routing tree that includes all instances of the raw
TRNG in order to pool their different binary outputs and
multiplex their input into the raw random FIFO. In order to
allow evaluation of the entropy of a particular plan, IP allows
software to read the contents of the raw random FIFO (only
when configured in debug mode), a feature that is supposed to
be interesting only for FPGA targets.

IPECC is wrapped as AXI4-lite compatible IP, which in
practice means that it can connect directly to any AXI-on-a-
chip based interfacing system, such as an ARM or RISC-V
application processor. Zedboard includes ARM CORTEX – A9
as a powerful System Processing Unit. IPECC then becomes a
cryptographic peripheral memory mapped to the system's
overall physical address space and used in conjunction with a
software driver running on the CPU, can be programmed to
perform [k]P acceleration calculations on behalf of the
processor without requiring further CPU resource. Given the
relatively large computation time required to perform scalar
multiplication, and given the small amount of data required to

transfer input and output data to and from IP, no DMA interface
is required, and therefore IPECC is presented only as an AXI
slave/secondary interface, IPECC supports any elliptic curve in
primary fields (prime or complex order) as long as it is defined
by the Weierstrass equation. There is a one-to-one
correspondence between all elliptic curves and their description
by the Weierstrass equation, however, it is not always trivial to
translate curves used in some standard elliptic curve protocols
without being explicitly defined by the Weierstrass equation.
the (a, b) representation required by IPECC. For such curves,
one should consider using IPECC together with the highly
flexible libecc software library (and for other curves as well),
as it automatically and transparently performs the mathematical
conversion to Weierstrass form. Additionally, the highest level
of elliptic curve operations that IPECC can do is to calculate

[k]P. It does not implement any Elliptic Curve Signature
Protocol or Elliptic Curve Key Exchange Protocol. If you need
to either generate or verify elliptic curve signatures based on
any of the EC*DSA type signature schemes, you should
consider using a hash function on top of the [k]P calculation,
either designing software or using an accelerated IP with
hardware hash function. In fact, this is all the more reason why
libecc should be considered as the main software component
over IP [19].

B. Implementation

Fig. 3 shows the internal Block diagram and their

interconnection.

Fig. 3. Block Diagram

Fig. 4. Simulation

 Fig. 4 shows the results of the simulation using the Vivado
2023.2 environment software. The random number generator
was simulated using a text input file with random number
values.

 Fig. 5 shows the simulation results in the log file. The stages
of calculations in each cycle of the system are clearly visible, the
input data and the results both in each operating cycle as well as
in the final stage.

Fig. 5. Simulation Log

The implementation results are shown in Table 3. The analysis
describes the FPGA ZYNQ 7020 – G system resources that
were committed.

TABLE 3: Hardware Resources Zynq 7020 – G

Site Type Used Available Util%

Slice LUTs 4957 53200 9.31

LUT as Memory 206 17400 1.18

Slice Registers 5226 106400 4.91

Slice 1863 13300 14.00

LUT as Logic 4751 53200 8.93

Block RAM tile 13 140 9.28

As the Table 3 shows the hardware implementation of the
proposed system cover a very small number of FPGA resources.

C. Use Case

 The use of a key management system with the Elliptic
Curves technique analyzed in this work could be integrated into
an encryption/decryption system as it has been implemented
today [5], combined with a friendly user interface that can be
created with the traditional programming tools for web
applications, and to constitute as a frontend between a

communication system using 5G technology and cloud services
(see Fig. 6).

 The deployment of Field Programmable Gate Arrays
(FPGAs) in cloud environments over 5G networks offers
significant advantages in terms of performance, flexibility, and
scalability. However, the integration of FPGAs in these settings
also introduces new security challenges. This proposal outlines
a security framework to enhance the protection of FPGA-based
cloud services using Elliptic Curve Cryptography (ECC),
leveraging the high performance and low latency capabilities of
5G networks. The rapid adoption of 5G technology facilitates
the widespread use of cloud services, including FPGA-as-a-
Service (FaaS).

Fig. 6. A. complete FPGA Frontend Security Cloud System

over 5G with User and Admin control Interface

However, traditional security models are inadequate for the

dynamic and resource-constrained nature of FPGAs in multi-
tenant cloud environments. ECC, known for its strong security
per bit and efficiency, is well-suited for addressing these
challenges. Security Challenges in 5G FPGA Cloud
Environments are : a) Multi-Tenancy Risks: In multi-tenant
settings, malicious tenants can exploit shared resources to
launch attacks such as side-channel and fault injection attacks
[9 - 11], b) Data Confidentiality and Integrity: Ensuring that
data processed by FPGAs is not exposed or tampered with
during transmission over 5G networks is crucial and c)
Bitstream Protection: Protecting FPGA bitstreams from
unauthorized access and modification is essential to prevent IP
theft and malicious reconfigurations. The main points of the
proposal to implement such a system based on the key system
with elliptic curves are a) ECC's smaller key sizes provide
strong security with less computational overhead, suitable for
FPGA environments, b) Implement ECC-based digital
signatures to ensure the authenticity and integrity of data and
bitstreams. Reinforcement techniques could be integrated into
the system with FPGA systems that can offer services such as
a) Intrusion Detection and Monitoring, and b) Implementing
monitoring mechanisms to detect anomalies and potential
attacks based on unusual patterns of FPGA resource usage.

IV. CONCLUSION

In this work, the implementation of an elliptic curve-based
cryptographic key generation system that can be combined with
frontend encryption/decryption systems for files in cloud
environments is detailed. The core of the system is based on the
Zynq FPGA platform, on which the SoC was implemented and

supports unique key pair generation functions. Additionally
fortify the security of FPGA deployments in 5G cloud
environments using ECC, addressing critical vulnerabilities
while maintaining performance efficiency. By implementing a
robust security architecture, we can leverage the full potential
of FPGAs and 5G technology securely and reliably.

ACKNOWLEDGEMENT

This article describes work undertaken in the context of the
SAND5G project, “Security Assessments for Networks anD
Services in 5G” which has received funding from the European
Union’s Digital Europe programme under grant agreement No
101127979 and is supported by European Cybersecurity
Competence Center. Views and opinions expressed are
however those of the author(s) only and do not necessarily
reflect those of the European Union. Neither the European
Union nor the granting authority can be held responsible for
them.

REFERENCES

[1] V. S. Miller, "Use of elliptic curves in cryptography," in Advances in

Cryptology, H. C. Williams, Ed. Berlin, Germany: Springer-Verlag, 1986, pp.
417-426.

[2] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography, CRC Press, 1996.

[3] C. P. Schnorr, "Efficient identification and signatures for smart cards," in

Advances in Cryptology—Crypto '89, G. Brassard, Ed., Lecture Notes in
Computer Science, vol. 435. Berlin, Germany: Springer-Verlag, 1990, pp. 239-

252.

[4] C.-P. Schnorr, "Efficient signature generation by smart cards," J. Cryptol.,
vol. 4, no. 3, pp. 161-174, 1991.

[5] M. Papadopoulos and P. Kitsos, "FPGA-based encryption system for cloud

security," 2023.
[6] É. Brier and M. Joye, "Weierstraß elliptic curves and side-channel attacks,"

in International Conference on Theory and Practice of Public Key

Cryptography, 2002.

[7] R. R. Goundar, M. Joye, and A. Miyaji, "Co-z addition formulæ and binary

ladders on elliptic curves," 2010.

[8] M. Joye, "Highly regular right-to-left algorithms for scalar multiplication,"
2007.

[9] I. Giechaskiel et al., "Gotcha! I know what you are doing on the FPGA

cloud: Fingerprinting co-located cloud FPGA accelerators via measuring
communication links," 2023.

[10] H. Englund and N. Lindskog, "Secure acceleration on cloud-based FPGAs

- FPGA enclaves," in IEEE International Parallel and Distributed Processing
Symposium Workshops, 2020.

[11] M. K. Ahmed, J. Mandebi, S. K. Saha, and C. Bobda, "Multi-tenant cloud

FPGA: A survey on security," 2022.
[12] A. Bag, S. Patranabis, D. Basu Roy, and D. Mukhopadhyay,

"Cryptographically secure multi-tenant provisioning of FPGAs," in Security,

Privacy, and Applied Cryptography Engineering, SPACE 2020, Lecture Notes
in Computer Science, vol. 12586. Berlin, Germany: Springer-Verlag, 2020, pp.

59-76.

[13] S. Patranabis, Y. Shrivastava, and D. Mukhopadhyay, "Provably secure
key-aggregate cryptosystems with broadcast aggregate keys for online data

sharing on the cloud," IEEE Trans. Comput., vol. 66, no. 5, pp. 891-904, May

2017.
[14] B. Yang, V. Rožić, M. Grujić, N. Mentens, and I. Verbauwhede, "ES-

TRNG: A high-throughput, low-area true random number generator based on

edge sampling," IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2018, no. 3,
pp. 267-292, 2018.

[15] A. Venelli and F. Dassance, "Faster side-channel resistant elliptic curve

scalar multiplication," 2010.
[16] I. Blake, G. Seroussi, and N. Smart, Elliptic Curves in Cryptography,

London Mathematical Society Lecture Note Series. Cambridge, U.K.:

Cambridge Univ. Press, 1999.

[17] R. R. Goundar, M. Joye, A. Miyaji, M. Rivain, and A. Venelli, "Scalar
multiplication on weierstraß elliptic curves from co-z arithmetic," J. Cryptogr.

Eng., vol. 1, no. 2, pp. 161-176, 2011.

[18] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. Berlin, Germany: Springer-Verlag, 2004.

[19] N. Meloni, "New point addition formulae for ECC applications," in

Arithmetic of Finite Fields, C. Carlet and B. Sunar, Eds. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 189-201.

